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A new concept of reliability of estimation of variables is introduced which relates
to the estimability of variables in the presence of sensor failures. Based on this
concept, a method for optimal location of sensors in a pure flow process is developed.
A graph-theoretic algorithm, SENNET, developed for this purpose, is shown to
perform robustly and give globally optimum solutions for realistic processes.

introduction

Chemical plants have grown larger in size and more inte-
grated, requiring the use of computers for process data ac-
quisition, monitoring, optimization and control. The efficiency
and performance of these computers depend on extensive and
accurate process data which are obtained through the meas-
urements of such process variables as flow rate, temperature,
concentration and level. Due to technical and economic fea-
sibility, increased plant complexity due to additional instru-
mentation, and disturbances originating from the process or
the environment, however, it is not possible to measure each
and every process variable. Here, we exploit the mass and
energy balance relationships between different variables of a
steady-state process to estimate some or all of the unmeasured
variables and more accurately estimate some measured vari-
ables. The estimability of variables depends on the topology
of the process and the locations of sensors. The problem of
selecting a set of variables to be measured, which is optimal
with respect to some specified criteria, is called the sensor
network design problem.

All variables that can be estimated either through their meas-
urements or indirectly through their relationships with other
measured variables are defined as observable. Moreover, if a
measured variable can also be indirectly estimated by using
measurements of other variables, then it is termed as redun-
dant. For steady-state systems the concepts of observability
and redundancy have been developed for pure mass flow (lin-
ear) processes (Mah et al., 1976) and for generalized processes
including energy and multicomponent flows (Stanley and Mah,
1981a; Kretsovalis and Mah, 1987b, 1988; and Crowe, 1989).
These concepts provide good qualitative criteria for sensor
network design. Vaclavek and Loucka (1976) developed a strat-
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egy for sensor location in multicomponent networks so as to
ensure the observability of all variables by assuming that either
all compositions of a stream are measured or none at all.
Kretsovalis and Mah (1987a) analyzed the effect of sensor
location on the accuracy of estimation. Their approach was
concerned essentially with the optimal allocation of redundant
sensors, because they assumed that ali variables are observable.

The problem of sensor location to ensure observability of
dynamic systems has also been addressed before (Omatu and
Seinfeld,1989). In this article, however, we are concerned with
steady-state processes only. The fundamental difference is that
for steady-state systems only the solvability of a set of algebraic
equations for a specified sensor location has to be checked,
whereas in dynamic systems the entire transient system state
during a time period has to be estimated, by making use of
all measurements during that time period.

In this article, we introduce a new concept called the reli-
ability of estimation of a variable. The reliability of estimation
of a variable is simply the probability with which it can be
estimated when sensors are likely to fail. This concept subsumes
the concepts of observability and redundancy and also accounts
for the probability of sensor failures. Using this concept, we
develop a systematic strategy for designing an optimum sensor
network. In addition, in our work we address the following
questions.

1. How many different ways can a variable be estimated,
and how should this aspect be taken into account in sensor
network design?

2. Every sensor is prone to failure with a finite probability.
If some of the sensors fail, can a variable still be estimated?

3. How do we design a sensor network to maximize the
probability with which a variable can be estimated?

In this article, we deal only with a steady-state mass-flow

AIChE Journal



process. Moreover, we design the sensor network for the min-
imum number of sensors necessary to make all variables ob-
servable. We show that even in this case many different sensor
networks can be designed, which ensure the observability of
all variables. However, they are not all equivalent, if we take
into account the probability of sensor failures. Interestingly,
all networks are not equivalent even if all sensors have the
same probability of failure.

Concept of Reliability of Estimation

First, we introduce the concept of reliability of estimating
a variable, when sensors are likely to fail independently with
known probabilities of failure. The reliability of estimating a
variable is defined as the probability of estimating the variable
for a given sensor network and for given probabilities of failure
of the sensors. This concept is applicable to both measured
and unmeasured variables.

Example 1

As an example, consider a simple process unit with one feed
stream and two product streams, as shown in Figure 1. The
mass flows of all streams are measured using sensors whose
failure probabilities are all assumed to be 0.1. For this simple
unit, the three flow variables are related to each other through
a mass balance:

F|=F2+F3

Assuming all sensor failures to occur independently and ran-
domly, we obtain the reliability R (F,) of estimating F, as:

R(F,)=Pr{S, is working} OR Pr {8, and S, are working}
=0.9+0.81-0.9x0.81
=0.981

Note that the reliability of estimating F, is greater than the
nonfailure probability of the sensor measuring F,. This is due
to the redundancy of F;.

The reliability of estimating a variable encompasses the con-
cepts of observability and redundancy as given by the following
properties:

1. A variable is observable, if and only if the reliability of
estimating a variable is greater than zero.

2. A measured variable is redundant, if and only if the re-
liability of estimating that variable is greater than the non-
failure probability of sensor measuring that variable.

In addition, the concept we propose accounts for the number
of different ways in which a variable can be estimated as well
as the sensor failure probabilities as demonstrated by example
1. The reliability of estimation of a variable is simply referred
to as the reliability in the subsequent development.

Cutsets vs. Reliability of Estimation of Process
Variables

In this section, we show how the cutsets of a process graph
can be used to evaluate the reliabilities of process variables.
Since the subsequent development makes extensive use of graph
theory, some of the key terms and concepts are defined in
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Figure 1. A simple process unit.

Appendix A. The description given in the Appendix is essen-
tially drawn from Deo (1974).

The representation of a process by a process graph has been
extensively used in process flowsheeting and in other appli-
cations of process design and analysis. The process units are
modeled as nodes, and streams incident on these units are
represented as edges. The process graph also contains a hy-
pothetical node, called the environment node, from which it
receives its feeds and to which it supplies its products. With
the inclusion of the environment node, the process graph be-
comes cyclic. In general, each process stream may consist of
several variables such as temperature, composition, and flow
rate. Since we consider only total mass flows, each edge rep-
resents a unique mass-flow variable. Hence, in this develop-
ment no distinction is made between the edge and the mass
flow variable it represents. It should also be noted that the
directions of edges are not important for the subsequent de-
velopment, although in all our examples the directions of edges
are shown for the sake of clarity.

Given a set of process variables measured, we first obtain
the different possible ways through which each variable can
be estimated using mass balance equations and measurements
of other variables. The concept of cutsets is used for this
purpose.

Cutsets have been used extensively in observability and re-
dundancy classification (Kretsovalis and Mah, 1987b, 1988).
Mabh et al. (1976) have proved that for a pure mass-flow net-
work, all variables are observable if the unmeasured variables
form a spanning tree. It is also known (Deo, 1974) that a
spanning tree of #» nodes has n—1 edges (variables). From
these two results, it immediately follows that the minimum
number of sensors n, required to make all variables observable
is given by:

n=e—n+1l 1)

where e is the total number of edges.

The above result not only gives the minimum number of
sensors required to make all mass flows observable but also
tells us about their feasible locations. The strategy is to choose

May 1993 Vol. 39, No. 5 821



any spanning tree of the process graph and locate the sensors
on the chords of the spanning tree. Thus, the chords and the
branches of the spanning tree represent the measured and un-
measured streams, respectively.

A further observation is that, in the above case, there is a
unique way for estimating every variable. While each measured
variable can be estimated only through its measurement, each
of the unmeasured variable can be estimated only through a
fundamental cutset which consists of that variable (branch of
the spanning tree) and some or all of the measured variables
(chords of the spanning tree).

The reliability of each variable for minimum number of
sensors can easily be evaluated. For a measured variable, the
reliability is simply equal to the probability that the sensor
measuring that variable does not fail. The reliability of esti-
mating an unmeasured variable, /, is the probability that all
sensors in the fundamental cutset containing that variable are
in working state. It is given by:

R(=J] a-p) ®
Jjek]
JFEi
where K7 is the fundamental cutset containing variable 7, and
p;’s are the failure probabilities of the sensors corresponding
to the chords in that fundamental cutset. Thus, the evaluation
of reliabilities requires a procedure for obtaining all funda-
mental cutsets of the spanning tree (corresponding to the sensor
network). We have implemented a straightforward algorithm
for this purpose.

Sensor Network Design

If the requirement is simply that all variables should be
observable, then any spanning tree of the process graph can
be constructed and the sensors may be placed on the chords
of the spanning tree. With respect to observability, all spanning
trees are equivalent. However, different spanning trees lead to
different reliabilities as shown by the following example.

Example 2

Consider the simplified ammonia network (Kretsovalis and
Mah, 1988) which consists of six nodes and eight edges with
node 6 representing the environmental node, as shown in Figure
2. Using Eq. 1, the minimum number of sensors required for
this process is three, sincee—n+1=8 -6+ 1=3. Letusassume
that sensors can be placed on any stream and each of them
has a failure probability of 0.1.

Case 1. Mass flows in streams 1, 4 and 7 are measured.
The mass flow of stream 6 can be estimated using the fun-
damental cutset (1, 4, 6, 7), which gives a reliability of 0.729.

Case 2. Mass flows in streams 4, 5 and 7 are measured.
The mass flow of stream 6 is now estimated through the fun-
damental cutset (5, 6, 7) giving a reliability of 0.81, which is
higher than that for case 1. The above example shows that a
trade-off exists between sensor placement and reliability which
can be utilized to design a sensor network.

Objective function

Clearly, the objective of a sensor network design can be
maximizing the reliabilities of all variables. This, however, is
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Figure 2. Simplified ammonia network.

not possible since only a minimum of sensors can be used. An
attempt to maximize the reliability of any one particular vari-
able may even lead to some other variables being unobservable.
The objective we propose is to design a sensor network such
that the minimum reliability among all variables is maximized.
This objective is chosen based on the philosophy that a chain
is no stronger than its weakest link. The integrated nature of
the process leads to our logic that the reliability of the variable,
which is the least, should be maximized by the proper selection
of sensor locations. The minimum reliability of a sensor net-
work is referred to as the network reliability.

Solution strategy

In a network, consisting of #» nodes and e edges, the minimum
number of sensors required is shown to be equal to e—n+1.
If explicit enumeration is used, then e!/(e—n+1)!(n—-1)!
combinations have to be examined to find the one that leads
to maximum network reliability. In this process, however,
many useless solutions which lead to unobservable variables
are examined.

Alternatively, only those solutions that ensure observability
of all variables can be explicitly generated. As already shown,
these solutions correspond to the chords of spanning trees.
Thus, all spanning trees of the process graph can be generated,
and the one that leads to the maximum network reliability can
be chosen. Many algorithms are available for generating ail
spanning trees of a graph (Aho et al., 1974; Deo, 1974; Ni-
jenhuis and Wilf, 1978). Even in this case, however, the number
of spanning trees can be fairly large. In the worst case the
number of spanning trees can be as large as 7"~ 2 (Deo, 1974).
Thus when the number of units exceed eight, this approach
cannot practically be used.

We propose an iterative improvement algorithm, which may
not in all cases give the optimum solution but is about three
to four orders of magnitude faster than explicit enumeration
of all spanning trees. The iterative algorithm starts with an
arbitrary spanning tree and at each iteration generates a new
spanning tree with an improved network reliability. We make
use of the following lemmas in the development of this iterative
algorithm. The proofs of these lemmas are given in Appendix
B.
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Lemma 1. 1f a sensor is placed on one of the branches,
say b;, of a spanning tree, then one of the sensors placed on
the chords belonging to the fundamental cutset K7 has to be
removed. This will ensure that the new set of unmeasured
variables form a spanning tree.

Remarks. This lemma describes a procedure for generating
another spanning tree through the addition of a chord and
deletion of an appropriate branch from a given spanning tree.
This process is known as the elementary tree transformation
(Deo, 1974).

Lemma2. Theringsum of two fundamental cutsets, which
have at least one common chord, gives a cutset of the graph.

Remarks. A ring sum of two fundamental cutsets may
either give another cutset of a graph or a union of edge-disjoint
cutsets. But, when the fundamental cutsets have a common
chord, then we prove that their ring sum always gives a cutset
of the graph. This property is useful in generating the fun-
damental cutsets of a new spanning tree obtained through an
elementary tree transformation.

Lemma 3. For any sensor network the minimum reliability
is always attained for an unmeasured variable and not for a
measured variable.

Remarks. This lemma shows that in order to improve the
network reliability of a given sensor network, we need to im-
prove the reliability of some unmeasured variable.

Lemma 4. Let T be a spanning tree solution with branch
b, having the minimum reliability. Let X be the ring sum of
K7 and K%, where K% is the fundamental cutset with respect to
some branch b,. If the failure probabilities of all sensors are
equal, then the network reliability can be improved by placing
a sensor on branch b, and removing the sensor from chord ¢,
provided the following conditions hold:

1. ¢,€K% and c,eK’,

2. IKI< IK]]

3. If c,€ kY for any fundamental cutset, then | K/® K| < 1K{|
The variable b, is denoted as the leaving variable and the
variable ¢, as the entering variable.

Remarks. The second condition listed above ensures that
the reliability of variable b, increases, while the third condition
ensures that the reliabilities of all other unmeasured variables
remain greater than the current network reliability.

There are three points to be noted with respect to Lemma
4. First, the network reliability cannot be improved by placing
a sensor on variable b,. This is because to maintain a spanning
tree solution, the sensor of some chord of X% should be removed
(Lemma 1). The reliability of this variable in the new solution
will then be equal to R(b,), and thus the network reliability
is unchanged.

Secondly, if sensor failure probabilities are unequal, then
the entering and leaving variables are still chosen in a similar
manner except that instead of checking for the cardinality
conditions 2 and 3 we explicitly evaluate the reliabilities of
variables b, and b;’s. Equation 2 can be used to evaluate these
reliabilities.

Lastly, the converse of Lemma 4 is not true, that is, if we
cannot find a branch b, and chord ¢, satisfying the three con-
ditions, it does not imply that the global optimum solution
has been obtained (although we can view it as a local optimum).
Moreover, if conditions 2 and 3 do not hold as strict inequalities
or if there are two or more variables with minimum reliability,
then we get a degenerate solution (that is, the network reliability
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remains the same for the next solution and may continue for
subsequent solutions as well). Both these problems are handled
using heuristic strategies. The algorithm we propose is de-
scribed below.

Algorithm~—Equal Sensor Failure Probabilities

Based on the four lemmas, we develop an algorithm called
SENNET for the SENsor NETwork design problem. For clar-
ity of description, we consider the case when all the sensors
have the same failure probabilities. The algorithm has some
similarities with the SIMPLEX algorithm used in linear pro-
gramming.

We start with an initial spanning tree and attempt to improve
the network reliability by choosing a branch in which to place
a sensor (leaving variable) and a chord from which to remove
a sensor (entering variable). The algorithm is as follows:

Step 1. Generate a spanning tree of the process graph.

Step 2. Generate all the fundamental cutsets K/ of the
spanning tree.

Step 3. Obtain K,, the set of fundamental cutsets that
have the maximum cardinality. The branches corresponding
to these fundamental cutsets are the variables with minimum
reliability (compare with Eq. 2).

Step 4. Choose any element of K, say K%, which has not
been considered before. Mark K7 as examined and go to step
5. If no such fundamental cutset exists go to step 10.

Step 5. Choose any other fundamental cutset K{, which has
not been examined before. Obtain K, the ring sum of K% and
K/, Mark K/ as examined and go to step 6. If no such K7 exists
g0 to step 4.

Step 6. If |IKI=<1K%l go to step 7. Otherwise, go to step
5.

Step 7. Compute the set I= K, — K. Choose a chord ¢, from
set 7 which has not been examined before. Mark c, as examined
and go to step 8. If no such chord exists, go to step 5.

Step 8. For all fundamental cutsets K{ containing chord
¢, if IK[@®K,I <K/l go to step 9. Otherwise, go to step 7.

Step9. Branch b, is selected as a leaving variable and chord
¢, is chosen to enter the spanning tree. Update all fundamental
cutsets (to obtain the fundamental cutsets of the new tree) and
g0 to step 3.

Step 10. Stop, if this step has already been executed ten
times. Otherwise, store the current solution. Let branch b, be
selected as the leaving variable where b, corresponds to the
most recently examined cutset K{, and ¢, is any arbitrary ele-
ment of set K{— K, where X is the ring sum of K/ and K. Go
to step 3.

The optimum sensor network design corresponds to locating
sensors on the chords of the ‘“‘optimum’’ spanning tree. To un-
derstand the algorithm easily, a flow chart is given in Figure 3.

Handling degeneracy

In the above algorithm steps 6, 7 and 8, check to see that
the conditions of Lemma 4 are satisfied. Note that in the
algorithm the inequalities are weak inequalities and may lead
to successive solutions which do not improve the network re-
liability (degeneracy). In fact, it is theoretically possible to be
caught in an infinite loop. We attempt to break degeneracy
by random selection of set K% from set K., in step 4 and
random selection of chords ¢, from set Jin step 7. This heuristic
method has worked well with the problems we tested.
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Figure 3. Flowchart of algorithm SENNET.

Hill climbing procedure

Step 10 in the above algorithm is implemented as an attempt
to get away from a local minimum and reach the global op-
timum solution. If we reach a situation in which any choice
of entering/leaving variable worsens the network reliability,
then we perturb the current best solution and allow the network
reliability to decrease and repeat the algorithm. This is akin
to “hill climbing’’ strategies used in optimization. If after ten
such attempts we are unable to improve the network reliability,
then we choose the best current solution as optimum.

Updating the fundamental cutsets

In step 9, the fundamental cutsets of the new spanning tree
can simply be obtained by updating the fundamental cutsets
of the previous spanning tree as follows.

The fundamental cutset of the entering variable ¢, is given
by K%. If a fundamental cutset K7 contains ¢, as a member,
then the updated fundamental cutset is given by the ring sum
of K/and K7. All other fundamental cutsets remain unaltered.

Example 3

We illustrate our algorithm for the sensor network design
of a simplified ammonia plant shown in Figure 2. As shown
in Example 2, the minimum number of sensors required for
this plant is three. Let the sensor failure probabilities for all
edges be 0.1,

Step 1. Let the initial spanning tree solution consist of the
unmeasured edges 2, 3, 5, 6 and 8.
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Step 2. The fundamental cutsets are as follows (branches
have an underscore):

0 47,8
@ 1,4,6,7
i) (1,4,5)
(iv) (1,2)

™ (1,3)

Steps 3 and 4. The set K, consists of the maximum car-
dinality cutset ii in which variable 6 is observed using three
sensor signals.This is the variable that has the minimum re-
liability and we attempt to improve its reliability. Thus,

Ki=(1,4,6,7
Steps 5 and 6. The ring sum of K% with other fundamental
cutsets gives the following cutsets:

@ 1,6,8

i G,6,7

(i) 2,467

vy G.4,67
Among the above cutsets, only the first two have cardinality
less than that of K. We arbitrarily choose the first. Thus,
K,=(4,7, 8) and K=(1, 6, 8)

Steps 7 and 8. The set I is obtained as I=K/~K=(4, 7).
Any of the chords in set 7 may be chosen. We choose chord
4. Thus, ¢, = 4.

Step 9. The branch b, =8 leaves the tree and chord 4 enters
it. The new spanning tree obtained through the elementary
tree transformation s (2, 3, 4, 5, 6). The following fundamental
cutsets for this new spanning tree may be obtained by updating
the previous solution (using Lemma 2).

D 4,78

i 1,6, 8

i) (1,5,7,8)

iv) 1,2

™ 1,3
Note that the reliability of variable 6 has improved though the
network reliability remains the same, since cutset iii above
contains three chords. This is due to the fact that for this
cutset, condition 3 of Lemma 4 holds only as a weak inequality.

We can proceed with the next iteration in which 6 is the
leaving variable and 1 is the entering variable to give the span-
ning tree solution (1, 2, 3, 4, 5). In the subsequent iteration,
there is no choice of entering variables and a local optimum
solution is obtained. We check if better solutions can be ob-
tained by applying the hill climbing technique. However, in
this case, the solution is not improved in ten successive attempts
and we adopt the solution (1, 2, 3, 4, 5) as optimal. This
solution corresponds to sensors on variables 6, 7 and 8.

To compare this solution with the global optimum, we im-
plemented an algorithm (Nijenhuis and Wilf, 1978) for explicit
enumeration of all spanning trees and obtained the best so-
lutions. The results of this analysis are presented in Table 1.
This table shows that the process graph has 32 spanning trees
out of which only eight are globally optimal giving a network
reliability of 0.81. It also shows the optimal solutions generated
by our algorithm for § different initial starting solutions. All
the solutions given by our algorithm are also found to be
globally optimal, thus indicating that the algorithm is robust
with respect to the choice of initial solutions and gives globally
optimal solutions.
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Table 1. Data and Results of Ammonia Plant

Data

No. of nodes: 6

No. of edges: 8

Failure probability of each sensor: 0.1

Results

Minimum no. of sensors: 3
No. of spanning trees: 32
No. of optimal solutions: 8
Network reliability: 0.810

Initial Solution Optimal Solution
23578 12345
23567 23478
23467 12478
13456 12478
12358 12368

Example 4

As a second example, consider the sensor network design
for a steam metering network of a methanol plant (Serth and
Heenan, 1986). This system is practically of reasonable size
consisting of 12 nodes and 28 edges as shown in Figure 4. The
environmental node (node 12) is not shown in the figure to
maintain clarity. We have assumed that all sensors have a
failure probability of 0.1.

The complete analysis of this network is presented in Table
2. In this case, the total number of spanning tree solutions is
large, but only about 0.01% of these solutions is globally
optimal giving a network reliability of 0.53. The worst sensor
placement for this network corresponds to the initial spanning
tree (1 29 10 12 17 18 20 22 27 28) which gives a network
reliability of 0.17 (variable 28). The solutions generated by our
algorithm for five different initial spanning trees are shown in
Table 2. All these solutions are found to be globally optimal
including the case when we start with the worst initial spanning

Figure 4. Steam metering network.
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Table 2. Data and Results of Steam Metering Network (Equal
Failure Probabilities)

Data
No. of nodes: 12
No. of edges: 28

Failure probability of each sensor: 0.10

Results
Minimum no. of sensors: 17

No. of spanning trees: 1,243,845

No. of optimal solutions: 125
Network reliability: 0.530

Initial Solution

Optimal Solution

49101213 172024252628
4910121317 18 21 22 26 27
12345101415162628
12910121718 2022 27 28
245812152123252628

2491012172024 252628
124912172123252728
124891017 21222427

124910172122252728
124810172122242728

tree solution (row 4 in Table 2). Although the algorithm is not
guaranteed to give globally optimal solutions, at least for the
several cases we tried, we did not obtain a suboptimal solution.
The algorithm takes about 15 seconds on an IBM compatible
PC using an 80386 processor and an 80387 coprocessor. In
contrast, explicit enumeration of all spanning trees for this
example requires about 17 hours of computing time. This again
demonstrates the robustness and efficiency of the algorithm.

Unequal sensor failure probabilities

Finally, we examine the performance of the algorithm when
sensor failure probabilities are unequal. The modifications to
the algorithm for treating unequal sensor failure probabilities
have been explained earlier. We again consider the steam me-
tering system. The failure probabilities of the sensors are gen-
erated using random numbers. Two different sets of failure
probabilities were generated and the algorithm was applied.
The results in Tables 3 and 4 show that the number of optimal
solutions has further decreased. Despite this, the algorithm
could obtain the globally optimal solutions starting from each

Table 3. Data and Results of Steam Metering Network
(Unequat Failure Probabilities)

Data

No. of nodes: 12

No. of edges: 28

Failure probabilities of sensors:

0.256 0.169 0.150 0.242 0.150 0.381 0.350 0.381 0.090 0.355 0.201
0.123 0.276 0.388 0.248 0.100 0.199 0.089 0.075 0.065 0.204 0.289
0.330 0.382 0.184 0.128 0.103 0.400

Results

Minimum no. of sensors; 17
No. of spanning trees: 1,243,845
No. of optimal solutions: 23
Network reliability: 0.204

Initial Solution

Optimal Solution

01213172024252628
0121317 1821222627
451014151626 28

01217 18 20 22 27 28

491
491
123
1291

245812152123252628

2481012172123242528
14681017 2122232428
810172122232428
812172123242528
8

146
146
14681012172]1232428
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Table 4. Data and Results of Steam Metering Network
(Unequal Failure Probabilities)

Data

Total number of nodes: 12

Total number of edges: 28

Failure probabilities of sensors:

0.266 0.143 0.111 0.078 0.344 0.125 0.223 0.138 0.293 0.346 0.315
0.137 0.200 0.177 0.145 0.057 0.231 0.144 0.239 0.322 0.123 0.102
0.325 0.201 0.057 0.256 0.275 0.125

Results

Minimum no. of sensors: 17
No. of spanning trees: 1,243,845
No. of optimal solutions: 92
Network reliability: 0.284

Initial Solution Optimal Solution

49101213 17 20 24 25 26 28 146912172123252728
4910121317 18 21 22 26 27 14691017 2124252728
1234510141516 26 28 146910172122252728
14
14

129101217 18202227 28 691217 2124252728
245812152123252628 691017 21 24 2527 28

of the five different spanning trees. It was observed that for
this case, more iterations were required before the optimal
solution was achieved. Furthermore, ‘‘hill climbing’’ technique
proved more useful. On an average, the hill climbing technique
had to be applied 5-6 times to obtain the global optimum.

Concluding Remarks

The problem of sensor location has been addressed in a
complete process plant based on an entirely new and powerful
concept of reliability of estimation of variables. The concept
of reliability inherently contains the concepts of observability
and redundancy and also accounts for sensor failures. A robust
and efficient iterative improvement algorithm has been de-
veloped for sensor network design when the minimum number
of sensors have to be installed in a pure mass-flow process.
The extension to sensor network design for general processes
requires further development. A comprehensive strategy for
sensor network design that considers reliability, accuracy, and
controllability needs to be developed, and the present work
can serve as a starting point.

Notation
b; = branch i of the spanning tree T
b, = branch leaving the spanning tree T
b, = branch with minimum reliability
¢; = chord i of the spanning tree T
¢, = chord entering the spanning tree T
e = number of edges in the process graph
E(E’) = set of edges of graph G(G')
F, = flow rate in stream /
G = graph
G’ = subgraph of G
I = set of entering variables defined in step 7 of algorithm
K = ring sum of K% and K/,
K., = set of maximum cardinality cutsets
K{(K]) = fundamental cutset of spanning tree 7(7T) containing
branch b;
n = number of nodes in the process graph
n, = minimum no. of sensors required to observe all vari-
ables
p; = failure probability of the sensor of variable i
pn = sensor having the highest probability of failure
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identically equal
implies that

R(i), R(i) = reliability of variable i in spanning tree T, T
S, = sensor i
T = spanning tree of the process graph
T = updated spanning tree of T
V(V’) = set of nodes of graph G(G')
Other symbols
€ = member of
|.1 = cardinality of
@ = ring sum of
II = product of

Literature Cited

Aho, A. V., J. E. Hopcroft, and J. D. Ullman, The Design and
Analysis of Computer Algorithms, Addison-Wesley, New York
(1974).

Crowe, C. M., ““‘Observability and Redundancy of Process Data for
Steady State Reconciliation,”” Chem. Eng. Sci., 44, 2909 (1989).
Deo, N., Graph Theory with Applications to Engineering and Com-

puter Science, Prentice Hall, Englewood Cliffs, NJ (1974).

Kretsovalis, A., and R. S. H. Mah, “Effect of Redundancy on Es-
timation Accuracy in Process Data Reconciliation,”” Chem. Eng.
Sci., 42, 2115 (1987a).

Kretsovalis, A., and R. S. H. Mah, “‘Observability and Redundancy
Classification in Multicomponent Process Network,” AIChE J.,
33, 910 (1987b).

Kretsovalis, A., and R. S. H. Mah, ““Observability and Redundancy
Classification in Generalized Process Networks: I. Theorems,”
Comput. Chem. Eng., 12, 671 (1988).

Mah, R. S. H., G. M. Stanley, and D. M. Downing, ‘‘Reconciliation
and Rectification of Process Flow and Inventory Data,”’ Ind. Engng.
Chem. Process Des. Dev., 15, 175 (1976).

Nijenhuis, A., and H. S. Wilf, Combinatorial Algorithms for Com-
puters and Calculators, Academic Press, New York (1978).

Omatu, S., and J. H. Seinfeld, Distributed Parameter Systems: Theory
and Applications, Oxford University Press, Oxford (1989).

Serth, R. W., and W. A. Heenan, “‘Gross Error Detection and Data
Reconciliation in Steam-Metering Systems,”” AIChE J., 32, 733
(1986).

Stanley, G. M., and R. S. H. Mah, “‘Observability and Redundancy
in Process Data Estimation,”” Chem. Eng. Sci., 36, 259 (1981a).
Stanley, G. M., and R. S. H. Mah, ¢‘Observability and Redundancy
Classification in Process Networks, Theorems and Algorithms,””

Chem. Eng. Sci., 36, 1941 (1981b).

Vaclavek, V., and M. Loucka, ‘‘Selection of Measurements Necessary
to Achieve Multicomponent Mass Balances in Chemical Plant,”
Chem. Eng. Sci., 31, 1199 (1976).

Appendix A: Graph-Theoretic Terminology

Graph and subgraph

An undirected (respectively directed) graph G (V, E) consists
of a set of objects V= {v,, vy, . . . , v,] called vertices or nodes
and another set E={ey, e,, . . . , e,) called edges, such that
each edge e, is identified with an unordered (respectively or-
dered) pair (v;, v;) which are called the end nodes. The edges
are said to be incident on these nodes. Schematically, nodes
are represented as points, and edges are represented by arcs
joining these points as shown in Figure Al. Note that by its
very definition, a graph must contain both the end nodes of
every edge it contains.

A graph G’ (V’, E') is said to be a subgraph of G(V, E)
if V' € Vand E’ € E, and each edge of G’ has the same end
vertices in G’ as in G. For example, the graph shown in Figure
A2 is a subgraph of G(V, E) shown in Figure Al.
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Figure A1. An undirected graph G.

Paths, cycles, and connectivity

A path between vertices v, and v, is an alternating sequence
of distinct vertices and edges v, e, v, e, V5. . . U;_; €,_; U; Where
(v;, v;,, are the end nodes of edge ¢;). If v,= v, then the path
is called a cycle. For example, in Figure Al, the sequence of
edges 1, 2 and 3 together with their end nodes is a path and
the sequence 1, 2, 3, 5 and 6 together with their end nodes is
a cycle.

A graph G is said to be connected if there is at least one
path between every pair of vertices in G. The graph in Figure
Al is connected.

Trees, spanning trees, branches, and chords

A tree is a connected graph that does not contain any cycle.
The graph shown in Figure A3 is a tree. A tree T, is said to
be a spanning tree of graph G, if it is a subgraph of G and
all vertices of G are also contained in 7. For example, the
graph shown in Figure A4 is a spanning tree of the graph in

Figure A2. A subgraph of G.
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Figure A3. A tree.

Figure Al, whereas that shown in Figure A3 is not. An edge
in a spanning tree T is called a branch of T, while an edge of
G which is not in T is called a chord. Note that branches and
chords are defined with respect to a spanning tree. For example,
edges 1, 3, 4, 7, and 8 shown in the spanning tree of Figure
A4 are branches while edges 2, 5 and 6 which are present in
Figure Al but not in spanning tree of Figure A4 are chords.

Cutsets, fundamental cutsets, and ring sum

A cutset of a connected graph G, is a set of edges whose
removal from G disconnects it, but the removal of a proper
subset of these edges does not disconnect G. For example in
Figure Al, the set of edges 3, 6, 8 is a cutset. However, edges
2, 3, 6, 8 does not form a cutset (although, their removal
disconnects G) since the removal of a proper subset of edges
3, 6, and 8 itself can disconnect G.

Fundamental cutsets are defined with respect to a spanning
tree T of G. A fundamental cutset is a cutset of G which
contains exactly one branch of 7. For example, in Figure Al,

Figure A4. A spanning tree of G.
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edges 2, 6 and 8 form a fundamental cutset with respect to the
spanning tree in Figure A4 where edge 8 is a branch and all
the remaining edges are chords. On the other hand the set of
edges 4, 5, 6 and 8 is not a fundamental cutset with respect
to the spanning tree shown in Figure A4 (although, it is a
cutset) since it contains more than one branch of 7.

The ring sum (denoted as @) of two cutsets K, and X is
the set of all edges which are either in X, and K, but not in
both. For example, the ring sum of two cutsets (1, 4, 5) and
4, 5, 6, 8) is a set (1, 6, 8). It does not contain edges 4 and
5 as these are common to both cutsets.

Appendix B: Proof of Lemmas

Proof of lemma 1
The proof of this lemma is given in Deo (1974).

Proof of lemma 2

Consider a spanning tree 7 of a graph G with branches
{b, - - - ,b,_}andchords {c,, - + -, C._ps1]. Without loss
of generality, let fundamental cutsets X% and Kﬁ be defined
as:

K£=[bx’cls tt
K§= {by’cl; *

s CrCrity » 0 0 C,)

* 5 CnCoppy * 0 0 5 G

where chords {c,, - - -, ¢,} are common to both K7 and K7,

The ring sum of X% and K7 is the set of all edges in X% and
K} excluding the common ones. Thus,

K£®K{'= lbx’cr+b St Ty cs’byacs+l9 M Ct}

All that is required to be proved is that if a proper subset of
edges from the above set is deleted, it does not disconnect G.
Deletion of {c,,y, *+ - + ,CCr1» * * - , ¢} Will not disconnect
G, because all these are chords and the branches of T still exist
which maintains connectivity of G. Similarly deletion of b, or
byand {c.yy, * -+, CCiy1y + * + , ¢} Will Dot disconnect G
because common edges {c;, - - - , ¢,} preserve the connectiv-
ity of G. It is only when b, and b, and all the chords are deleted
that G is disconnected. Hence the ring sum forms another
cutset and not a union of edge disjoint cutsets.

Proof of lemma 3

Consider the measurement with highest sensor failure prob-
ability p,, [thus, the least reliability among measured variables
is (1—-p,)]. This will be a chord of the spanning tree corre-
sponding to the sensor network design. Since every chord ap-
pears in some fundamental cutset (Deo, 1974), let chord p,, be
a member of fundamental cutset K/ which includes branch b;
and one or more additional chords. Thus,

R)=]] a-p)=0-pn)
Jjek{
j#l

Either b; has the lowest reliability or some other branch. In
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any case, the least reliability is attained for an unmeasured
variable.

Proof of lemma 4

By lemma 1, we know that by placing a sensor on b, and
removing the sensor from chord ¢, € K%, another spanning tree
solution is obtained. Let the new spanning tree be 7 and let
R(.) represent the reliabilities of the variables and K/ be the
fundamental cutsets corresponding to 7. Our objective is to
prove that reliabilities of all variables in the new solution T
are greater than R(b,). Let

K£={bxvcl, s CCrits cs}
nglbq,ch S CnCsary 0t s G}
Then
K=K£®K£={bx’cr+ls R cs’bqacu-ls Y C,}

We know from lemma 2 that K is a cutset of the graph. Fur-
thermore, in the new spanning tree solution, cutset X contains
only one unmeasured variable (b,). It should be noted that
condition (1) of this lemma ensures that the new unmeasured
variable (c,) is not amember of K. Based on these observations
we conclude that X is a fundamental cutset with respect to
spanning tree 7 containing branch b,. Thus,

K=K

From condition 2 and the assumption that all sensors have
same failure probability it follows that:

R(b)>R(b)

For the new unmeasured variable ¢, we get:
K,=K,=R(c,)=R(b,)>R(b,)
If ¢, is a member of any fundamental cutset K7 then,
K/=KI®K}

From condition 3, it therefore follows that:

R(b))>R(b,)
On the other hand, if ¢, is not a member of cutset K/, then
the reliability of b; remains unchanged (since K/=K7). Thus,
the reliability of all variables corresponding to T is strictly
greater than the minimum reliability corresponding to 7. Thus,

min R(b)>R(b,)

proving that the network reliability has improved.
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