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A new concept of reliability of estimation of variables is introduced which relates 
to the estimability of variables in the presence of sensor failures. Based on this 
concept, a method for optimal location of sensors in apureflowprocess is developed. 
A graph-theoretic algorithm, SENNET, developed for this purpose, is shown to 
perform robustly and give globally optimum solutions for realistic processes. 

Introduction 
Chemical plants have grown larger in size and more inte- 

grated, requiring the use of computers for process data ac- 
quisition, monitoring, optimization and control. The efficiency 
and performance of these computers depend on extensive and 
accurate process data which are obtained through the meas- 
urements of such process variables as flow rate, temperature, 
concentration and level. Due to technical and economic fea- 
sibility, increased plant complexity due to additional instru- 
mentation, and disturbances originating from the process or 
the environment, however, it is not possible to measure each 
and every process variable. Here, we exploit the mass and 
energy balance relationships between different variables of a 
steady-state process to estimate some or all of the unmeasured 
variables and more accurately estimate some measured vari- 
ables. The estimability of variables depends on the topology 
of the process and the locations of sensors. The problem of 
selecting a set of variables to be measured, which is optimal 
with respect to some specified criteria, is called the sensor 
network design problem. 

All variables that can be estimated either through their meas- 
urements or indirectly through their relationships with other 
measured variables are defined as observable. Moreover, if a 
measured variable can also be indirectly estimated by using 
measurements of other variables, then it is termed as redun- 
dant. For steady-state systems the concepts of observability 
and redundancy have been developed for pure mass flow (lin- 
ear) processes (Mah et al., 1976) and for generalized processes 
including energy and multicomponent flows (Stanley and Mah, 
1981a; Kretsovalis and Mah, 1987b, 1988; and Crowe, 1989). 
These concepts provide good qualitative criteria for sensor 
network design. Vaclavek and Loucka (1 976) developed a strat- 
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egy for sensor location in multicomponent networks so as to 
ensure the observability of all variables by assuming that either 
all compositions of a stream are measured or none at all. 
Kretsovalis and Mah (1987a) analyzed the effect of sensor 
location on the accuracy of estimation. Their approach was 
concerned essentially with the optimal allocation of redundant 
sensors, because they assumed that all variables are observable. 

The problem of sensor location to ensure observability of 
dynamic systems has also been addressed before (Omatu and 
Seinfeld, 1989). In this article, however, we are concerned with 
steady-state processes only. The fundamental difference is that 
for steady-state systems only the solvability of a set of algebraic 
equations for a specified sensor location has to be checked, 
whereas in dynamic systems the entire transient system state 
during a time period has to be estimated, by making use of 
all measurements during that time period. 

In this article, we introduce a new concept called the reli- 
ability of estimation of a variable. The reliability of estimation 
of a variable is simply the probability with which it can be 
estimated when sensors are likely to fail. This concept subsumes 
the concepts of observability and redundancy and also accounts 
for the probability of sensor failures. Using this concept, we 
develop a systematic strategy for designing an optimum sensor 
network. In addition, in our work we address the following 
questions. 

1. How many different ways can a variable be estimated, 
and how should this aspect be taken into account in sensor 
network design? 

2. Every sensor is prone to failure with a finite probability. 
If some of the sensors fail, can a variable still be estimated? 

3. How do we design a sensor network to maximize the 
probability with which a variable can be estimated? 

In this article, we deal only with a steady-state mass-flow 

May 1993 Vol. 39, No. 5 AIChE Journal 
820 



process. Moreover, we design the sensor network for the min- 
imum number of sensors necessary to make all variables ob- 
servable. We show that even in this case many different sensor 
networks can be designed, which ensure the observability of 
all variables. However, they are not all equivalent, if we take 
into account the probability of sensor failures. Interestingly, 
all networks are not equivalent even if all sensors have the 
same probability of failure. 

Concept of Reliability of Estimation 
First, we introduce the concept of reliability of estimating 

a variable, when sensors are likely to fail independently with 
known probabilities of failure. The reliability of estimating a 
variable is defined as the probability of estimating the variable 
for a given sensor network and for given probabilities of failure 
of the sensors. This concept is applicable to both measured 
and unmeasured variables. 

Example 1 
As an example, consider a simple process unit with one feed 

stream and two product streams, as shown in Figure 1. The 
mass flows of all streams are measured using sensors whose 
failure probabilities are all assumed to be 0.1. For this simple 
unit, the three flow variables are related to each other through 
a mass balance: 

Fl= Fz + F3 

Assuming all sensor failures to occur independently and ran- 
domly, we obtain the reliability R ( F l )  of estimating F, as: 

R ( Fl ) = Pr 1 SI is working ] OR Pr [ S, and S3 are working ) 

=0.9+0.81-0.9~0.81 

=0.981 

Note that the reliability of estimating Fl is greater than the 
nonfailure probability of the sensor measuring F l .  This is due 
to the redundancy of Fl .  

The reliability of estimating a variable encompasses the con- 
cepts of observability and redundancy as given by the following 
properties: 

1. A variable is observable, if and only if the reliability of 
estimating a variable is greater than zero. 

2. A measured variable is redundant, if and only if the re- 
liability of estimating that variable is greater than the non- 
failure probability of sensor measuring that variable. 

In addition, the concept we propose accounts for the number 
of different ways in which a variable can be estimated as well 
as the sensor failure probabilities as demonstrated by example 
1. The reliability of estimation of a variable is simply referred 
to as the reliability in the subsequent development. 

Cutsets vs. Reliability of Estimation of Process 
Variables 

In this section, we show how the cutsets of a process graph 
can be used to evaluate the reliabilities of process variables. 
Since the subsequent development makes extensive use of graph 
theory, some of the key terms and concepts are defined in 

0 

I 

Figure 1. A simple process unit. 

Appendix A. The description given in the Appendix is essen- 
tially drawn from Deo (1974). 

The representation of a process by a process graph has been 
extensively used in process flowsheeting and in other appli- 
cations of process design and analysis. The process units are 
modeled as nodes, and streams incident on these units are 
represented as edges. The process graph also contains a hy- 
pothetical node, called the environment node, from which it 
receives its feeds and to which it supplies its products. With 
the inclusion of the environment node, the process graph be- 
comes cyclic. In general, each process stream may consist of 
several variables such as temperature, composition, and flow 
rate. Since we consider only total mass flows, each edge rep- 
resents a unique mass-flow variable. Hence, in this develop- 
ment no distinction is made between the edge and the mass 
flow variable it represents. It should also be noted that the 
directions of edges are not important for the subsequent de- 
velopment, although in all our examples the directions of edges 
are shown for the sake of clarity. 

Given a set of process variables measured, we first obtain 
the different possible ways through which each variable can 
be estimated using mass balance equations and measurements 
of other variables. The concept of cutsets is used for this 
purpose. 

Cutsets have been used extensively in observability and re- 
dundancy classification (Kretsovalis and Mah, 1987b, 1988). 
Mah et al. (1976) have proved that for a pure mass-flow net- 
work, all variables are observable if the unmeasured variables 
form a spanning tree. It is also known (Deo, 1974) that a 
spanning tree of n nodes has n- 1 edges (variables). From 
these two results, it immediately follows that the minimum 
number of sensors n, required to make all variables observable 
is given by: 

where e is the total number of edges. 
The above result not only gives the minimum number of 

sensors required to make all mass flows observable but also 
tells us about their feasible locations. The strategy is to choose 
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any spanning tree of the process graph and locate the sensors 
on the chords of the spanning tree. Thus, the chords and the 
branches of the spanning tree represent the measured and un- 
measured streams, respectively. 

A further observation is that, in the above case, there is a 
unique way for estimating every variable. While each measured 
variable can be estimated only through its measurement, each 
of the unmeasured variable can be estimated only through a 
fundamental cutset which consists of that variable (branch of 
the spanning tree) and some or all of the measured variables 
(chords of the spanning tree). 

The reliability of each variable for minimum number of 
sensors can easily be evaluated. For a measured variable, the 
reliability is simply equal to the probability that the sensor 
measuring that variable does not fail. The reliability of esti- 
mating an unmeasured variable, i ,  is the probability that all 
sensors in the fundamental cutset containing that variable are 
in working state. It is given by: 

j€K! 
j # i  

where K{ is the fundamental cutset containing variable i, and 
p i s  are the failure probabilities of the sensors corresponding 
to the chords in that fundamental cutset. Thus, the evaluation 
of reliabilities requires a procedure for obtaining all funda- 
mental cutsets of the spanning tree (corresponding to the sensor 
network). We have implemented a straightforward algorithm 
for this purpose. 

Sensor Network Design 
If the requirement is simply that all variables should be 

observable, then any spanning tree of the process graph can 
be constructed and the sensors may be placed on the chords 
of the spanning tree. With respect to observability, all spanning 
trees are equivalent. However, different spanning trees lead to 
different reliabilities as shown by the following example. 

Example 2 
Consider the simplified ammonia network (Kretsovalis and 

Mah, 1988) which consists of six nodes and eight edges with 
node 6 representing the environmental node, as shown in Figure 
2. Using Eq. 1 ,  the minimum number of sensors required for 
this process is three, since e- n + 1 = 8 - 6 + 1 = 3. Let us assume 
that sensors can be placed on any stream and each of them 
has a failure probability of 0.1. 

Mass flows in streams 1, 4 and 7 are measured. 
The mass flow of stream 6 can be estimated using the fun- 
damental cutset (1, 4, 6, 7), which gives a reliability of 0.729. 

Case 2. Mass flows in streams 4, 5 and 7 are measured. 
The mass flow of stream 6 is now estimated through the fun- 
damental cutset (5, 6, 7) giving a reliability of 0.81, which is 
higher than that for case 1. The above example shows that a 
trade-off exists between sensor placement and reliability which 
can be utilized to design a sensor network. 

Case 1. 

Objective function 
Clearly, the objective of a sensor network design can be 

maximizing the reliabilities of all variables. This, however, is 

n 

Figure 2. Simplified ammonia network. 

not possible since only a minimum of sensors can be used. An 
attempt to maximize the reliability of any one particular vari- 
able may even lead to some other variables being unobservable. 
The objective we propose is to design a sensor network such 
that the minimum reliability among all variables is maximized. 
This objective is chosen based on the philosophy that a chain 
is no stronger than its weakest link. The integrated nature of 
the process leads to our logic that the reliability of the variable, 
which is the least, should be maximized by the proper selection 
of sensor locations. The minimum reliability of a sensor net- 
work is referred to as the network reliability. 

Solution strategy 
In a network, consisting of n nodes and eedges, the minimum 

number of sensors required is shown to be equal to e - n + 1 .  
If explicit enumeration is used, then e! / ( e -  n + l)! ( n  - l)! 
combinations have to be examined to find the one that leads 
to maximum network reliability. In this process, however, 
many useless solutions which lead to unobservable variables 
are examined. 

Alternatively, only those solutions that ensure observability 
of all variables can be explicitly generated. As already shown, 
these solutions correspond to the chords of spanning trees. 
Thus, all spanning trees of the process graph can be generated, 
and the one that leads to the maximum network reliability can 
be chosen. Many algorithms are available for generating all 
spanning trees of a graph (Ah0 et al., 1974; Deo, 1974; Ni- 
jenhuis and Wilf, 1978). Even in this case, however, the number 
of spanning trees can be fairly large. In the worst case the 
number of spanning trees can be as large as nn-* (Deo, 1974). 
Thus when the number of units exceed eight, this approach 
cannot practically be used. 

We propose an iterative improvement algorithm, which may 
not in all cases give the optimum solution but is about three 
to four orders of magnitude faster than explicit enumeration 
of all spanning trees. The iterative algorithm starts with an 
arbitrary spanning tree and at each iteration generates a new 
spanning tree with an improved network reliability. We make 
use of the following lemmas in the development of this iterative 
algorithm. The proofs of these lemmas are given in Appendix 
B. 
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Lemma I .  If a sensor is placed on one of the branches, 
say bi, of a spanning tree, then one of the sensors placed on 
the chords belonging to the fundamental cutset K{ has to be 
removed. This will ensure that the new set of unmeasured 
variables form a spanning tree. 

Remarks. This lemma describes a procedure for generating 

remains the same for the next solution and may continue for 
subsequent solutions as well). Both these problems are handled 
using heuristic strategies. The algorithm we propose is de- 
scribed below. 

Algorithm-Equal Sensor Failure Probabilities 
another spanning tree through the addition of a chord and 
deletion of an appropriate branch from a given spanning tree. 
This process is known as the elementary tree transformation 
(Deo, 1974). 

Lemma 2. The ring sum of two fundamental cutsets, which 
have at least one common chord, gives a cutset of the graph. 

Remarks. A ring sum of two fundamental cutsets may 
either give another cutset of a graph or a union of edge-disjoint 
cutsets. But, when the fundamental cutsets have a common 
chord, then we prove that their ring sum always gives a cutset 
of the graph. This property is useful in generating the fun- 
damental cutsets of a new spanning tree obtained through an 
elementary tree transformation. 

Lemma 3. For any sensor network the minimum reliability 
is always attained for an unmeasured variable and not for a 
measured variable. 

Remarks. This lemma shows that in order to improve the 
network reliability of a given sensor network, we need to im- 
prove the reliability of some unmeasured variable. 

Lemma 4. Let T be a spanning tree solution with branch 
b, having the minimum reliability. Let K be the ring sum of 
K< and Kf,, where Kf, is the fundamental cutset with respect to 
some branch b,. If the failure probabilities of all sensors are 
equal, then the network reliability can be improved by placing 
a sensor on branch b, and removing the sensor from chord c,, 
provided the following conditions hold: 

1. c,EKf, and cp€K< 
2. IKI < IK<l 
3. Ifc,EK:for any fundamentalcutset, then IK@K{I < IK{I 

The variable 6, is denoted as the leaving variable and the 
variable c, as the entering variable. 

The second condition listed above ensures that 
the reliability of variable b, increases, while the third condition 
ensures that the reliabilities of all other unmeasured variables 
remain greater than the current network reliability. 

There are three points to be noted with respect to Lemma 
4. First, the network reliability cannot be improved by placing 
a sensor on variable bx. This is because to maintain a spanning 
tree solution, the sensor of some chord of K’; should be removed 
(Lemma 1). The reliability of this variable in the new solution 
will then be equal to R ( bx),  and thus the network reliability 
is unchanged. 

Secondly, if sensor failure probabilities are unequal, then 
the entering and leaving variables are still chosen in a similar 
manner except that instead of checking for the cardinality 
conditions 2 and 3 we explicitly evaluate the reliabilities of 
variables b, and bis.  Equation 2 can be used to evaluate these 
reliabilities. 

Lastly, the converse of Lemma 4 is not true, that is, if we 
cannot find a branch b, and chord cp satisfying the three con- 
ditions, it does not imply that the global optimum solution 
has been obtained (although we can view it as a local optimum). 
Moreover, if conditions 2 and 3 do not hold as strict inequalities 
or if there are two or more variables with minimum reliability, 
then we get a degenerate solution (that is, the network reliability 

Remarks. 

- 
Based on the four lemmas, we develop an algorithm called 

SENNET for the SENsor NETwork design problem. For clar- 
ity of description, we consider the case when all the sensors 
have the same failure probabilities. The algorithm has some 
similarities with the SIMPLEX algorithm used in linear pro- 
gramming. 

We start with an initial spanning tree and attempt to improve 
the network reliability by choosing a branch in which to place 
a sensor (leaving variable) and a chord from which to remove 
a sensor (entering variable). The algorithm is as follows: 

Step 1. Generate a spanning tree of the process graph. 
Step 2. Generate all the fundamental cutsets K{ of the 

spanning tree. 
Step 3. Obtain K,,, the set of fundamental cutsets that 

have the maximum cardinality. The branches corresponding 
to these fundamental cutsets are the variables with minimum 
reliability (compare with Eq. 2). 

Step 4. Choose any element of K,,, say K<, which has not 
been considered before. Mark K’; as examined and go to step 
5 .  If no such fundamental cutset exists go to step 10. 

Choose any other fundamental cutset Kf, which has 
not been examined before. Obtain K ,  the ring sum of K/; and 
K’,. Mark Kf, as examined and go to step 6. If no such Kf, exists 
go to step 4. 

Step 6. If IKI I IK<I go to step 7. Otherwise, go to step 
5 .  

Step 7. Compute the set I= K<- K. Choose a chord c, from 
set I which has not been examined before. Mark cp as examined 
and go to step 8. If no such chord exists, go to step 5 .  

For all fundamental cutsets K$ containing chord 
c,, if IK{@Kf,I 5 lK{l, go to step 9. Otherwise, go to step 7. 

Branch b, is selected as a leaving variable and chord 
c, is chosen to enter the spanning tree. Update all fundamental 
cutsets (to obtain the fundamental cutsets of the new tree) and 
go to step 3. 

Step 10. Stop, if this step has already been executed ten 
times. Otherwise, store the current solution. Let branch bq be 
selected as the leaving variable where bq corresponds to the 
most recently examined cutset K’, and c, is any arbitrary ele- 
ment of set K’;- K ,  where K is the ring sum of K< and K’,. Go 
to step 3. 

The optimum sensor network design corresponds to locating 
sensors on the chords of the “optimum” spanning tree. To un- 
derstand the algorithm easily, a flow chart is given in Figure 3. 

Handling degeneracy 
In the above algorithm steps 6, 7 and 8, check to see that 

the conditions of Lemma 4 are satisfied. Note that in the 
algorithm the inequalities are weak inequalities and may lead 
to successive solutions which do not improve the network re- 
liability (degeneracy). In fact, it is theoretically possible to be 
caught in an infinite loop. We attempt to break degeneracy 
by random selection of set K< from set K,,, in step 4 and 
random selection of chords c, from set I i n  step 7. This heuristic 
method has worked well with the problems we tested. 

Step 5. 

Step 8. 

Step 9. 
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Figure 3. Flowchart of algorithm SENNET. 

Hill climbing procedure 
Step 10 in the above algorithm is implemented as an attempt 

to get away from a local minimum and reach the global op- 
timum solution. If we reach a situation in which any choice 
of enteringlleaving variable worsens the network reliability, 
then we perturb the current best solution and allow the network 
reliability to decrease and repeat the algorithm. This is akin 
to “hill climbing’’ strategies used in optimization. If after ten 
such attempts we are unable to improve the network reliability, 
then we choose the best current solution as optimum. 

Updating the fundamental cutsets 
In step 9, the fundamental cutsets of the new spanning tree 

can simply be obtained by updating the fundamental cutsets 
of the previous spanning tree as follows. 

The fundamental cutset of the entering variable cp is given 
by Ki. If a fundamental cutset K$ contains c,, as a member, 
then the updated fundamental cutset is given by the ring sum 
of Kjand K$ All other fundamental cutsets remain unaltered. 

Example 3 
We illustrate our algorithm for the sensor network design 

of a simplified ammonia plant shown in Figure 2. As shown 
in Example 2, the minimum number of sensors required for 
this plant is three. Let the sensor failure probabilities for all 
edges be 0.1, 

Let the initial spanning tree solution consist of the 
unmeasured edges 2, 3, 5 ,  6 and 8. 

Step 1. 

Step 2. The fundamental cutsets are as follows (branches 
have an underscore): 

(9 (4, 7,  8) 
(ii) (1, 4, 6, 7) 
(iii) (1, 4, 3) 
(iv) (1, 2) 
(v) (1, 2) 

Steps 3 and 4. The set K,, consists of the maximum car- 
dinality cutset ii in which variable 6 is observed using three 
sensor signals.This is the variable that has the minimum re- 
liability and we attempt to improve its reliability. Thus, 

K < = ( l ,  4 , 6 ,  7) 
Steps 5 and 6. The ring sum of K{ with other fundamental 

cutsets gives the following cutsets: 
0) ( 1 9  a, 8) 
(ii) (I, 6, 7) 
(iii) (2, 4, 5 ,  7) 
(iv) (2, 4, P, 7) 

Among the above cutsets, only the first two have cardinality 
less than that of K;. We arbitrarily choose the first. Thus, 
K{=(4, 7, 8) and K = ( l ,  6, 8) 

Steps 7 and 8. The set I is obtained as I= K i -  K = (4, 7). 
Any of the chords in set I may be chosen. We choose chord 
4. Thus, cP = 4. 

The branch 6, = 8 leaves the tree and chord 4 enters 
it. The new spanning tree obtained through the elementary 
tree transformation is (2,3,4,5,6). The following fundamental 
cutsets for this new spanning tree may be obtained by updating 
the previous solution (using Lemma 2). 

Step 9. 

6) (A, 7, 8) 
(ii) (1, 5 ,  8) 
(iii) (1, 3, 7, 8) 
(iv) ( 1 9  2) 
(v) ( 1 , 3  

Note that the reliability of variable fj has improved though the 
network reliability remains the same, since cutset iii above 
contains three chords. This is due to the fact that for this 
cutset, condition 3 of Lemma 4 holds only as a weak inequality. 

We can proceed with the next iteration in which 6 is the 
leaving variable and 1 is the entering variable to give the span- 
ning tree solution (1 ,  2, 3, 4, 5). In the subsequent iteration, 
there is no choice of entering variables and a local optimum 
solution is obtained. We check if better solutions can be ob- 
tained by applying the hill climbing technique. However, in 
this case, the solution is not improved in ten successive attempts 
and we adopt the solution (1, 2, 3, 4, 5) as optimal. This 
solution corresponds to sensors on variables 6, 7 and 8. 
To compare this solution with the global optimum, we im- 

plemented an algorithm (Nijenhuis and Wilf, 1978) for explicit 
enumeration of all spanning trees and obtained the best so- 
lutions. The results of this analysis are presented in Table l.  
This table shows that the process graph has 32 spanning trees 
out of which only eight are globally optimal giving a network 
reliability of 0.81. It also shows the optimal solutions generated 
by our algorithm for 5 different initial starting solutions. All 
the solutions given by our algorithm are also found to be 
globally optimal, thus indicating that the algorithm is robust 
with respect to the choice of initial solutions and gives globally 
optimal solutions. 
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Table 1. Data and Results of Ammonia Plant 

Data 
No. of nodes: 6 
No. of edges: 8 
Failure probability of each sensor: 0.1 

Results 
Minimum no. of sensors: 3 
No. of spanning trees: 32 
No. of optimal solutions: 8 
Network reliability: 0.810 

Initial Solution Optimal Solution 

2 3 5 7 8  1 2 3 4 5  
2 3 5 6 7  2 3 4 7 8  
2 3 4 6 7  1 2 4 7 8  
1 3 4 5 6  1 2 4 7 8  
1 2 3 5 8  1 2 3 6 8  

Example 4 
As a second example, consider the sensor network design 

for a steam metering network of a methanol plant (Serth and 
Heenan, 1986). This system is practically of reasonable size 
consisting of 12 nodes and 28 edges as shown in Figure 4. The 
environmental node (node 12) is not shown in the figure to 
maintain clarity. We have assumed that all sensors have a 
failure probability of 0.1. 

The complete analysis of this network is presented in Table 
2. In this case, the total number of spanning tree solutions is 
large, but only about 0.01% of these solutions is globally 
optimal giving a network reliability of 0.53. The worst sensor 
placement for this network corresponds to the initial spanning 
tree (1 2 9 10 12 17 18 20 22 27 28) which gives a network 
reliability of 0.17 (variable 28). The solutions generated by our 
algorithm for five different initial spanning trees are shown in 
Table 2. All these solutions are found to be globally optimal 
including the case when we start with the worst initial spanning 

Figure 4. Steam metering network. 

Table 2. Data and Results of Steam Metering Network (Equal 
Failure Probabilities) 

Data 
No. of nodes: 12 
No. of edges: 28 
Failure probability of each sensor: 0.10 

Results 
Minimum no. of sensors: 17 
No. of spanning trees: 1,243,845 
No. of optimal solutions: 125 
Network reliability: 0.530 

Initial Solution optimal solution 

4 9 10 12 13 17 20 24 25 26 28 
4 9 10 12 13 17 18 21 22 26 27 
1 2 3 4 5 10 14 15 16 26 28 
1 2 9 10 12 17 18 20 22 27 28 
2 4 5 8 12 15 21 23 25 26 28 

2 4 9 10 12 17 20 24 25 26 28 
1 2 4 9 12 17 21 23 25 27 28 
1 2 4 8 9 10 17 21 22 24 27 
1 2 4 9 10 17 21 22 25 27 28 
1 2 4 8 10 17 21 22 24 27 28 

tree solution (row 4 in Table 2). Although the algorithm is not 
guaranteed to give globally optimal solutions, at least for the 
several cases we tried, we did not obtain a suboptimal solution. 
The algorithm takes about 15 seconds on an IBM compatible 
PC using an 80386 processor and an 80387 coprocessor. In 
contrast, explicit enumeration of all spanning trees for this 
example requires about 17 hours of computing time. This again 
demonstrates the robustness and efficiency of the algorithm. 

Unequal sensor failure probabilities 
Finally, we examine the performance of the algorithm when 

sensor failure probabilities are unequal. The modifications to 
the algorithm for treating unequal sensor failure probabilities 
have been explained earlier. We again consider the steam me- 
tering system. The failure probabilities of the sensors are gen- 
erated using random numbers. Two different sets of failure 
probabilities were generated and the algorithm was applied. 
The results in Tables 3 and 4 show that the number of optimal 
solutions has further decreased. Despite this, the algorithm 
could obtain the globally optimal solutions starting from each 

Table 3. Data and Results of Steam Metering Network 
(Unequal Failure Probabilities) 

Data 
No. of nodes: 12 
No. of edges: 28 
Failure probabilities of sensors: 
0.256 0.169 0.150 0.242 0.150 0.381 0.350 0.381 0.090 0.355 0.201 
0.123 0.276 0.388 0.248 0.100 0.199 0.089 0.075 0.065 0.204 0.289 
0.330 0.382 0.184 0.128 0.103 0.400 

Results 
Minimum no. of sensors: 17 
No. of spanning trees: 1,243,845 
No. of optimal solutions: 23 
Network reliability: 0.204 

Initial Solution Optimal Solution 

4 9 10 12 13 17 20 24 25 26 28 
4 9 10 12 13 17 18 21 22 26 27 
1 2 3 4 5 10 14 15 16 26 28 
1 2 9 10 12 17 18 20 22 27 28 
2 4 5 8 12 15 21 23 25 26 28 

2 4 8 10 12 17 21 23 24 25 2 8  
1 4 6 8 10 17 21 22 23 24 28 
1 4 6 8 10 17 21 22 23 24 28 
1 4 6 8 12 17 21 23 24 25 28 
1 4 6 8 10 12 17 21 23 24 28 
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Table 4. Data and Results of Steam Metering Network 
(Unequal Failure Probabilities) 

Data 
Total number of nodes: 12 
Total number of edges: 28 
Failure probabilities of sensors: 
0.2660.1430.111 0.0780.3440.1250.2230.1380.2930.3460.315 
0.1370.2000.1770.1450.0570.231 0.1440.2390.3220.1230.102 
0.325 0.201 0.057 0.256 0.275 0.125 

Results 
Minimum no. of sensors: 17 
No. of spanning trees: 1,243,845 
No. of optimal solutions: 92 
Network reliability: 0.284 

Initial Solution Optimal Solution 
~~~ 

4 9 10 12 13 17 20 24 25 26 28 
4 9 10 12 13 17 18 21 22 26 27 
1 2 3 4 5 10 14 15 16 26 28 
1 2 9 10 12 17 18 20 22 27 28 
2 4 5 8 12 15 21 23 25 26 28 

1 4 6 9 12 17 21 23 25 27 28 
1 4 6 9 10 17 21 24 25 27 28 
1 4 6 9 10 17 21 22 25 27 28 
1 4 6 9 12 17 21 24 25 27 28 
1 4 6 9 10 17 21 24 25 27 28 

of the five different spanning trees. It was observed that for 
this case, more iterations were required before the optimal 
solution was achieved. Furthermore, “hill climbing” technique 
proved more useful. On an average, the hill climbing technique 
had to be applied 5-6 times to obtain the global optimum. 

Concluding Remarks 
The problem of sensor location has been addressed in a 

complete process plant based on an entirely new and powerful 
concept of reliability of estimation of variables. The concept 
of reliability inherently contains the concepts of observability 
and redundancy and also accounts for sensor failures. A robust 
and efficient iterative improvement algorithm has been de- 
veloped for sensor network design when the minimum number 
of sensors have to be installed in a pure mass-flow process. 
The extension to sensor network design for general processes 
requires further development. A comprehensive strategy for 
sensor network design that considers reliability, accuracy, and 
controllability needs to be developed, and the present work 
can serve as a starting point. 

Notation 
b. = 
b, = 
b, = 

c, = 
e =  

E ( E ’ )  = 
F, = 
G =  

G’ = 
I =  

K =  
Kmax = 

K!(K{) = 

c .  = 

n =  
n, = 

Pi = 
P m  = 

branch i of the spanning tree T 
branch leaving the spanning tree T 
branch with minimum reliability 
chord i of the spanning tree T 
chord entering the spanning tree T 
number of edges in the process graph 
set of edges of graph G ( G ’ )  
flow rate in stream i 
graph 
subgraph of G 
set of entering variables defined in step 7 of algorithm 
ring sum of K!: and Kf, 
set of maximum cardinality cutsets 
fundamental cutset of spanning tree T ( 7 )  containing 
branch b, 
number of nodes in the process graph 
minimum no. of sensors required to observe all vari- 
ables 
failure probability of the sensor of variable i 
sensor having the highest probability of failure 

R ( i )  , ( i )  = reliability of variable i in spanning tree T, 
S, = sensor i 
T = spanning tree of the process graph 
T = updated spanning tree of T 
- 

V( V’ ) = set of nodes of graph G ( G ’  ) 

Other symbols 
c = member of 

I .  I = cardinality of 
@ = ring sum of 
Il = product of 
= = identically equal - = implies that 
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Appendix A: Graph-Theoretic Terminology 

Graph and subgraph 
An undirected (respectively directed) graph G ( V, E )  consists 

of a set of objects V =  [ v , ,  v2, . . . , v,] called vertices or nodes 
and another set E =  [ e,, e2, . . . , em) called edges, such that 
each edge ek is identified with an unordered (respectively or- 
dered) pair ( vi, v j )  which are called the end nodes. The edges 
are said to be incident on these nodes. Schematically, nodes 
are represented as points, and edges are represented by arcs 
joining these points as shown in Figure Al .  Note that by its 
very definition, a graph must contain both the end nodes of 
every edge it contains. 

A graph G’ ( V ’ ,  E‘) is said to be a subgraph of G (  V,  E) 
if V’ E V and E‘ E E, and each edge of  G ‘ has the same end 
vertices in G’ as in G. For example, the graph shown in Figure 
A2 is a subgraph of G (  V, E) shown in Figure Al .  
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Figure Al .  An undirected graph G. 

Paths, cycles, and connectivity 
A path between vertices v, and u1 is an alternating sequence 

of distinct vertices and edges v, e, u, el u2. . . v,- el_ I u, where 
(u i ,  u,, I are the end nodes of edge e i ) .  If v,= vl, then the path 
is called a cycle. For example, in Figure Al,  the sequence of 
edges 1 ,  2 and 3 together with their end nodes is a path and 
the sequence 1, 2, 3, 5 and 6 together with their end nodes is 
a cycle. 

A graph G is said to be connected if there is at least one 
path between every pair of vertices in G. The graph in Figure 
A1 is connected. 

Trees, spanning trees, branches, and chords 
A tree is a connected graph that does not contain any cycle. 

The graph shown in Figure A3 is a tree. A tree T, is said to 
be a spanning tree of graph G ,  if it is a subgraph of G and 
all vertices of G are also contained in T. For example, the 
graph shown in Figure A4 is a spanning tree of the graph in 

@A@ 
Figure A2. A subgraph of G. 

Figure A3. A tree. 

Figure Al,  whereas that shown in Figure A3 is not. An edge 
in a spanning tree T is called a branch of T, while an edge of 
G which is not in T is called a chord. Note that branches and 
chords are defined with respect to a spanning tree. For example, 
edges 1, 3, 4, 7, and 8 shown in the spanning tree of Figure 
A4 are branches while edges 2, 5 and 6 which are present in 
Figure A1 but not in spanning tree of Figure A4 are chords. 

Cutsets, fundamental cutsets, and ring sum 
A cutset of a connected graph G, is a set of edges whose 

removal from G disconnects it, but the removal of a proper 
subset of these edges does not disconnect G. For example in 
Figure Al ,  the set of edges 3, 6, 8 is a cutset. However, edges 
2, 3, 6, 8 does not form a cutset (although, their removal 
disconnects G) since the removal of a proper subset of edges 
3, 6, and 8 itself can disconnect G. 

Fundamental cutsets are defined with respect to a spanning 
tree T of G. A fundamental cutset is a cutset of G which 
contains exactly one branch of T. For example, in Figure Al ,  

Figure A4. A spanning tree of G. 
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edges 2 ,6  and 8 form a fundamental cutset with respect to the 
spanning tree in Figure A4 where edge 8 is a branch and all 
the remaining edges are chords. On the other hand the set of 
edges 4, 5, 6 and 8 is not a fundamental cutset with respect 
to the spanning tree shown in Figure A4 (although, it is a 
cutset) since it contains more than one branch of T. 

The ring sum (denoted as 0)  of two cutsets KI and K2 is 
the set of all edges which are either in Kl and K2 but not in 
both. For example, the ring sum of two cutsets (1, 4, 5) and 
(4, 5, 6, 8) is a set (1, 6, 8). It does not contain edges 4 and 
5 as these are common to both cutsets. 

Appendix B: Proof of Lemmas 

Proof of lemma I 
The proof of this lemma is given in Deo (1974). 

Proof of lemma 2 
Consider a spanning tree T of a graph G with branches 

( bl ,  . - . , b.- I 1 and chords ( cI, . - . , c,-,+ 1. Without loss 
of generality, let fundamental cutsets K{ and K$ be defined 
as: 

KJ;=[bx,CI, * * - 9 Cr,Cr+I ,  * * * 9 cs) 

K$= (by,C1, * * * 9 cr ,cs+~,  * 3 crl 

where chords (cl ,  . . 
K$ excluding the common ones. Thus, 

, cr)  are common to both K< and K{. 
The ring sum of K< and K$ is the set of all edges in K< and 

All that is required to be proved is that if a proper subset of 
edges from the above set is deleted, it does not disconnect G. 
Deletionof ( c ~ + ~ ,  - . - , c ~ , c ~ + ~ ,  . - , c,) willnot disconnect 
G, because all these are chords and the branches of T still exist 
which maintains connectivity of G. Similarly deletion of b, or 
by and (c,+~, - - . , C ~ , C ~ + ~ ,  - , c r )  will not disconnect G 
because common edges ( cl, - - - , cr)  preserve the connectiv- 
ity of G. It is only when b, and by and all the chords are deleted 
that G is disconnected. Hence the ring sum forms another 
cutset and not a union of edge disjoint cutsets. 

Proof of lemma 3 
Consider the measurement with highest sensor failure prob- 

ability p,,, [thus, the least reliability among measured variables 
is (1 -pm)]. This will be a chord of the spanning tree corre- 
sponding to the sensor network design. Since every chord ap- 
pears in some fundamental cutset (Deo, 1974), let chord p,,, be 
a member of fundamental cutset K{ which includes branch bi 
and one or more additional chords. Thus, 

R (bi = TI (1 -pj ) I (1 - p m )  
j € K {  
j #  I 

Either bi has the lowest reliability or some other branch. In 

any case, the least reliability is attained for an unmeasured 
variable. 

Proof of lemma 4 
By lemma 1 ,  we know that by placing a sensor on bq and 

removing the sensor from chord cp E K{, another spanning tree 
- solution is obtained. Let the new spanning tree be T and let 
R ( . )  represent the reliabilities of the variables and x{ be the 
fundamental cutsets corresponding to T. Our objective is to 
prove that reliabilities of all variables in the new solution T 
are greater than R (b,.) . Let 

Then 

We know from lemma 2 that K is a cutset of the graph. Fur- 
thermore, in the new spanning tree solution, cutset K contain& 
only one unmeasured variable (bx). It should be noted that 
condition (1) of this lemma ensures that the new unmeasured 
variable (c,) is not a member of K. Based on these observations 
we conclude that K is a fundamental cutset with respect to 
spanning tree containing branch b,. Thus, 

From condition 2 and the assumption that all sensors have 
same failure probability it follows that: 

For the new unmeasured variable cp we get: 

x: = K{*E ( cP) = R (b,) > R  (b,) 

If cp is a member of any fundamental cutset K$ then, 

R$= K@ K’, 

From condition 3, it therefore follows that: 

On the other hand, if cp is not a member of cutset K;, then 
the reliability of bj remains unchanged (since K$rK;). Thus, 
the reliability of all variables corresponding to T is strictly 
greater than the minimum reliability corresponding to T. Thus, 

minE(b,)>R(b,)  
I 

proving that the network reliability has improved. 
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